Prozentrechnung mit Dreisatz

Jetzt kaufen! Hier klicken!*

Prozentrechnung mit Dreisatz

Prozentrechnung mit Dreisatz gehört zu denjenigen Kapiteln, die manchen Schülern nicht unerhebliche Schwierigkeiten bereiten.

Allgemein ist der Dreisatz im Zusammenhang mit der Prozentrechnung sehr beliebt. Denn die Darstellung erscheint sehr übersichtlich und überschaubar. Das in der Darstellung verwendete mathematische Zeichen kann ich leider in WP nicht darstellen.

Das ist das mathematische Zeichen für entspricht. Es steht mir in WordPress weder im Standardzeichenseitz noch als Sonderzeichen zur Verfügung. Ich kann es also nur als Grafik abbilden. Im weiteren Text steht dafür das Wort „entspricht“.

Man schreibt:

100% entspricht   400€ (als Beispiel)
1% entspricht        4€
15% entspricht        60€

Diese Darstellung ist sehr übersichtlich und scheint für jeden gut verständlich.

Ist das mit dem Dreisatz wirklich so klar, wie es aussieht?

Ich habe da erhebliche Zweifel. Denn man muss bestimmen was der Grundwert ist.
In diesem Beispiel sind es die 400€.

Es könnte aber beispielsweise in einer Textaufgabe heißen: Der Preis wurde um 20% erhöht. Der Gegenstand kostet jetzt 40€ mehr.

Genau hier beginnt das Problem.
Diese 40€ sind nicht der Grundwert, sondern der der Prozentwert.

Da aber der Dreisatz so schön einfach, so übersichtlich ist, beginnen viele so:

100% entspricht    40€ (als Beispiel)
1% entspricht     0,4€
20% entspricht        ??€

Sie werden ganz klar erkannt haben, dass dies falsch ist.
Es ist Ihnen klar, dass der richtige Ansatz so aussehen müsste:

20% entspricht    40€ (als Beispiel)
1% entspricht      2€
100% entspricht    ??€

Der so übersichtliche Dreisatz führt zu einer unerwünschten Automatik.
Da kommt dann auch das Problem auf, was ich wodurch dividieren muss.

Diesen Problemen will ich mit meinem Ansatz entgegentreten!

Das im Video zeigt, wie einfach das Prozentrechnen mit Dreisatz aussieht.

Aber was ist der Dreisatz eigentlich?

Es ist ein Vorgehen, bei  dem man von einem Mehrfachen auf das Einfache schließt und vom Einfachen wieder auf ein abweichendes Mehrfaches schließt.

So weit dürfte das Vorgehen leicht zu verstehen sein.
Diese Technik begegnet uns in vielen Bereichen der Mathematik.

In Verbindung mit einer Checkliste halte ich ein anderes Vorgehen für besser.

Die Checkliste soll helfen, herauszufinden, welche der drei Größen:

Grundwert – Prozentwert- Prozentsatz gegeben und welcher gesucht ist.

Dazu gehört dann auch noch eine Strategie, die keinen Zweifel über die notwendigen mathematischen Operationen zulässt.

Weiterlesen…..